Course specifications

Programme (s) on which the course	Pre – Master M.Sc. of Mathematics,
is given	Pure Mathematics
Major or minor element of	
Major or minor element of	
programmes	Mathematics
Department offering the	September 2011
programme	
Department offering the course	

A- Basic Information

Title:Partial Differential EquationsCode:M618Credit Hours:2 hrsLecture:2 hrsTutorial:0Practical:0Total:Teaching StaffProf.Dr/Mohamed El SheikhB-Professional InformationFractical:0

1- Overall aims of course

To serve as a first step in advanced level of partial differential

equations. To utilize the student background in basic partial differential

equations to serve the course of advanced partial differential equations.

2- Intended learning outcomes of course (ILOs)

a- Knowledge and understanding:

On completion of the course , successful students should be able to:

al Understand a knowledge and understanding of fundamental

definitions and ideas of partial differential equations.

a2 Have the knowledge about the mathematical terminologies used in this course.

- **a3** Develop the knowledge about the methods of solutions of some partial differential equations taught in this course for further use in other applied and computational courses.
- **a4** Understand theories and applications on physical phenomena like wave and heat equations.
 - b- Intellectual skills

On completion of the course , successful students should be able to:

- **b1** Formulate exercises according to the type of the course.
- **b2** Classify the topics of the course into groups according to their application.
- **b3** Identify the different methods introduced in the course for

Suitable use in dealing with problems in differential equations.

b4 Construct Differential equations to describe the physical world and show an understanding of mathematical modeling of physical phenomena; use appropriate mathematical tools in physics problems.

c- Professional and practical skills On completion of the course, successful students should be able to:

- c1 Work exercise based on the tools he learned in the course.
- c2 Test the outcomes of the course through its use in practical application in different scientific fields.
- **c3** Apply the results of mathematical ideas, in formal presentations, both oral and written
 - d- General and transferable skills

On completion of the course , successful students should be able

to:

- **d1** Formulate exercise based on the tools he learned in the course.
- **d2** Test the outcomes of the course through its use in practical application in different scientific fields.
- **d3** Explain their own learning and use appropriate learning resources; work both independently and as part of a team.

3- Contents

Торіс	No. of hours	Lecture
Fourier transforms and initial value problems	4	2
Green.s function and boundry value problems	4	2
Laplace transform method for boundary value	4	2
Sturm Liouvell problem for Laplace Equations in rectangular and spherical coordinates	4	2
Elliptic partial differential equations Wave equation Heat a quation (maximum principal-Existence	6	3
Fourier integral-application to boundary value problems.	6	3

4- Teaching and learning methods

4.1- Lectures4.2- Working on hand in assignments4.3- Attending practical classes

5- Student assessment methods

5.1 Mid term written exam	to assess understanding
	competencies
5.2 Oral Exam	to assess attendance and
	interesting.
5.3 Semester hand in	to assess understanding
assignments	professionalism.
5.4 Final term written Exam	to assess comprehension.
Assessment schedule	

Assessment 1	Mid term	Week 4 and 7
Assessment 2	semester activities	Week 5 and 8
Assessment 3	Final term oral exam	Week 13
Assessment 4	final term written	Week 14
	exam	

Weighting of assessments

Mid-Term Examination

Semester Work (homework assignments +	20%
oral tests)	
Other types of assessment	
Final-term written Examination	
Total	100%

Any formative only assessments

6- List of references

- 6.1 Course notes Collected and prepared notes that cover the main topics in the course content
- 6.2 Essential books (text books) Elementary text books under the title : *Introduction to partial Differential Equations*
- 6.3 Recommended books1-Rene Dennemeyer,, Introduction to partial differential equations and Boundry value problema " Mc Graw Hill New York 1968

2-

- 6.4 Periodicals, Web sites, ... etc Non.
- 7- Facilities required for teaching and learning

PC's - packages for ready made scientific programs. Course coordinator: Prof. Mohamed El-sheikh

Head of Department: Prof. Mohamed A. Ramadan

Date: